What will turn out to be if the world is facing a scenario of insufficient water supply? None to have enough clean water to drink, cooking , washing and even better scope of sanitization. Health would be at threat. Sickness will be spreading like hell and so as death. The numbers keep increasing each day until the issue of sufficient clean water is solved. It is neither less to say that water, is one of the most important and precious need in life…towards a good and better living, the conditions of the water hygiene and its chemical substance need to be efficiently taken care of. World’s residences need water as a basic element of living.
Water chemistry….
Water is the chemical substance with chemical formula H2O: one molecule of water has two hydrogen atoms covalently bonded to a single oxygen atom. It is a tasteless, odourless liquid at ambient temperature and pressure, and appears colourless in small quantities, although it has its own intrinsic very light blue hue. Ice also appears colourless, and water vapour is essentially invisible as a gas. Water is primarily a liquid under standard conditions, which is not predicted from its relationship to other analogous hydrides of the oxygen family in the periodic table which are gases, such as hydrogen sulfide. Also the elements surrounding oxygen in the periodic table, nitrogen, fluorine, phosphorus, sulfur and chlorine, all combine with hydrogen to produce gases under standard conditions. The reason that oxygen hydride (water) forms a liquid is that it is more electronegative than all of these elements (other than fluorine). Oxygen attracts electrons much more strongly than hydrogen, resulting in a net positive charge on the hydrogen atoms, and a net negative charge on the oxygen atom. The presence of a charge on each of these atoms gives each water molecule a net dipole moment. Electrical attraction between water molecules due to this dipole pulls individual molecules closer together, making it more difficult to separate the molecules and therefore raising the boiling point. This attraction is known as hydrogen bonding. Water can be described as a polar liquid that dissociates disproportionately into the hydronium ion (H3O+(aq)) and an associated hydroxide ion (OH-(aq)). Water is in dynamic equilibrium between the liquid, gas and solid states at standard temperature and pressure, and is the only pure substance found naturally on Earth to be so.
Its chemical substance….
Water is a common chemical substance that is essential to all known forms of life. In typical usage, water refers only to its liquid form or state, but the substance also has a solid state, ice, and a gaseous state, water vapor. About 71% of water cover the Earth's surface, mostly in oceans and other large water bodies, with 1.6% of water below ground in aquifers and 0.001% in the air as vapor, clouds (formed of solid and liquid water particles suspended in air), and precipitation. Some of the Earth's water is a part of man-made and natural objects near the earth's surface such as water towers, and animal and plant bodies, manufactured products, and food stores.
Saltwater ocean….
Saltwater oceans hold 97.0% of surface water, glaciers and polar ice caps 2.4%, and other land surface water such as rivers and lakes 0.6%. Water in these forms moves perpetually through the water cycle of evaporation and transpiration, precipitation, and runoff usually reaching the sea. Winds carry water vapor over land at the same rate as runoff into the sea. Some water is trapped for periods in ice caps, glaciers, aquifers, or in lakes, for varying periods, sometimes providing fresh water for life on land. Clean, fresh water is essential to human and other life. In many parts of the world, it is in short supply. Many very important chemical substances, such as salts, sugars, acids, alkalis, some gases (especially oxygen), and many organic molecules dissolve in water.
Hydrophilic & Hydrophobic….
Water is a very strong solvent, referred to as the universal solvent, dissolving many types of substances. Substances that will mix well and dissolve in water (e.g. salts) are known as "hydrophilic" (water-loving) substances, while those that do not mix well with water (e.g. fats and oils), are known as "hydrophobic" (water-fearing) substances. The ability of a substance to dissolve in water is determined by whether or not the substance can match or better the strong attractive forces that water molecules generate between other water molecules. If a substance has properties that do not allow it to overcome these strong intermolecular forces, the molecules are "pushed out" from amongst the water and do not dissolve.
Cycling rising of tides…
Tides are the cyclic rising and falling of Earth's ocean surface caused by the tidal forces of the Moon and the Sun acting on the oceans. Tides cause changes in the depth of the marine and estuarine water bodies and produce oscillating currents known as tidal streams. The changing tide produced at a given location is the result of the changing positions of the Moon and Sun relative to the Earth coupled with the effects of Earth rotation and the local bathymetry. The strip of seashore that is submerged at high tide and exposed at low tide, the intertidal zone, is an important ecological product of ocean tides.
Water cycle…
The biosphere can be roughly divided into oceans, land, and atmosphere. Water moves perpetually through each of these regions in the water cycle consisting of following transfer processes: evaporation from oceans and other water bodies into the air and transpiration from land plants and animals into air, precipitation, from water vapor condensing from the air and falling to earth or ocean & runoff from the land usually reaching the sea. Most water vapor over the oceans returns to the oceans, but winds carry water vapor over land at the same rate as runoff into the sea, about 36 Tt per year. Over land, evaporation and transpiration contribute another 71 Tt per year. Precipitation, at a rate of 107 Tt per year over land, has several forms: most commonly rain, snow, and hail, with some contribution from fog and dew. Condensed water in the air may also refract sunlight to produce rainbows.
Watersheds down the river…
Water runoff often collects over watersheds flowing into rivers. Some of this is diverted to irrigation for agriculture. Rivers and seas offer opportunity for travel and commerce. Through erosion, runoff shapes the environment creating river valleys and deltas which provide rich soil and level ground for the establishment of population centers.
Effects on Life…
All known forms of life depend on water. Water is vital both as a solvent in which many of the body's solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Therefore, without water, these metabolic processes would cease to exist, leaving us to muse about what processes would be in its place, such as gas absorption, dust collection, etc.
Photosynthesis & Respiration….
Water is also central to photosynthesis and respiration. Photosynthetic cells use the sun's energy to split off water's hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the sun's energy and reform water and CO2 in the process (cellular respiration).
Underwater ecosystems…
Earth's waters are filled with life. Nearly all fish live exclusively in water, and there are many types of marine mammals, such as dolphins and whales that also live in the water. Some kinds of animals, such as amphibians, spend portions of their lives in water and portions on land. Plants such as kelp and algae grow in the water and are the basis for some underwater ecosystems. Plankton is generally the foundation of the ocean food chain.
Health and pollution….
Water fit for human consumption is called drinking water or potable water. Water that is not potable can be made potable by distillation (heating it until it becomes water vapor, and then capturing the vapor without any of the impurities it leaves behind), or by other methods (chemical or heat treatment that kills bacteria). Sometimes the term safe water is applied to potable water of a lower quality threshold (i.e., it is used effectively for nutrition in humans that have weak access to water cleaning processes, and does more good than harm). Water that is not fit for drinking but is not harmful for humans when used for swimming or bathing is called by various names other than potable or drinking water, and is sometimes called safe water, or "safe for bathing". Chlorine is a skin and mucous membrane irritant that is used to make water safe for bathing or drinking. Its use is highly technical and is usually monitored by government regulations (typically 1 part per million (ppm) for drinking water, and 1-2 ppm of chlorine not yet reacted with impurities for bathing water).
Social & Economic concern…
This natural resource is becoming scarcer in certain places, and its availability is a major social and economic concern. Currently, about 1 billion people around the world routinely drink unhealthy water. Most countries accepted the goal of halving by 2015 the number of people worldwide who do not have access to safe water and sanitation. Even if this difficult goal is met, it will still leave more than an estimated half a billion people without access to safe drinking water supplies and over 1 billion without access to adequate sanitation facilities. Poor water quality and bad sanitation are deadly; some 5 million deaths a year are caused by polluted drinking water. Water, however, is not a finite resource (like petroleum is), but rather re-circulated as potable water in precipitation in quantities many degrees of magnitude higher than human consumption. Therefore, it is the relatively small quantity of water in reserve in the earth (about 1% of our drinking water supply, which is replenished in aquifers around every 1 to 10 years), that is a non-renewable resource, and it is, rather, the distribution of potable and irrigation water which is scarce, rather than the actual amount of it that exists on the earth. Water-poor countries use importation of goods as the primary method of importing water (to leave enough for local human consumption), since the manufacturing process uses around 10 to 100 times products' masses in water.
Treating the waste water…
In the developing world, 90% of all wastewater still goes untreated into local rivers and streams. Some 50 countries, with roughly a third of the world’s population, also suffer from medium or high water stress, and 17 of these extract more water annually than is recharged through their natural water cycles. The strain affects surface freshwater bodies like rivers and lakes, but it also degrades groundwater resources.
Water for drinking…
About 70% of the fat free mass of the human body is made of water.[citation needed] To function properly, the body requires between one and seven liters of water per day to avoid dehydration; the precise amount depends on the level of activity, temperature, humidity, and other factors. Most of this is ingested through foods or beverages other than drinking straight water. It is not clear how much water intake is needed by healthy people, though most experts agree that 8–10 glasses of water (approximately 2 liters) daily is the minimum to maintain proper hydration.[
Water as a solvent….
Dissolving (or suspending) is used to wash everyday items such as the human body, clothes, floors, cars, food, and pets.
Water as a thermal transfer agent….
Boiling, steaming, and simmering are popular cooking methods that often require immersing food in water or its gaseous state, steam. Water is also used in industrial contexts as a coolant, and in almost all power-stations as a coolant and to drive steam turbines to generate electricity. In the nuclear industry, water can also be used as a neutron moderator.
Water for Recreation….
Humans use water for many recreational purposes, as well as for exercising and for sports. Some of these include swimming, waterskiing, boating, fishing, and diving. In addition, some sports, like ice hockey and ice skating, are played on ice. Some boats in a harbor in Miami Beach, FloridaLakesides and beaches are popular places for people to go to relax and enjoy recreation. Many find the sound of flowing water to be calming, too. Some keep fish and other life in water tanks or ponds for show, fun, and companionship. Humans also use water for snow sports i.e. skiing or snowboarding, which requires the water to be frozen. People may also use water for play fighting such as with snowballs, water guns or water balloons. They may also make fountains and use water in their public or private decorations.
Water in Industrial applications
Pressurized water is used in water blasting and water jet cutters. Also, very high pressure water guns are used for precise cutting. It works very well, is relatively safe, and is not harmful to the environment.
Water in Food processing….
Water plays many critical roles within the field of food science. It is important for a food scientist to understand the roles that water plays within food processing to ensure the success of their products. Solutes such as salts and sugars found in water affect the physical properties of water. Water hardness is also a critical factor in food processing. It can dramatically affect the quality of a product as well as playing a role in sanitation. Water hardness is classified based on the amounts of removable calcium carbonate salt it contains per gallon. The hardness of water may be altered or treated by using a chemical ion exchange system. The hardness of water also affects its pH balance which plays a critical role in food processing.
Water in generating Power…
Hydroelectricity is electricity obtained from hydropower. Hydroelectric power comes from water driving a water turbine connected to a generator. Hydroelectricity is a low-cost, non-polluting, renewable energy source.
Water in politics…
Because of overpopulation, mass consumption, misuse, and water pollution, the availability of drinking water per capita is inadequate and shrinking as of the year 2006. For this reason, water is a strategic resource in the globe and an important element in many political conflicts. Some have predicted that clean water will become the "next oil"[citation needed], making Canada, with this resource in abundance, possibly the richest country in the world. There is a long history of conflict over water, including efforts to gain access to water, the use of water in wars started for other reasons, and tensions over shortages and control. Privatization of water companies has been contested on several occasions because of poor water quality, increasing prices, and ethical concerns.
Water regulation…
Drinking water is often collected at springs, extracted from artificial borings in the ground, or wells. Building more wells in adequate places is thus a possible way to produce more water, assuming the aquifers can supply an adequate flow. Other water sources are rainwater and river or lake water. This surface water, however, must be purified for human consumption. This may involve removal of undissolved substances, dissolved substances and harmful microbes. Popular methods are filtering with sand which only removes undissolved material, while chlorination and boiling kill harmful microbes. Distillation does all three functions. More advanced techniques exist, such as reverse osmosis. Desalination of abundant ocean or seawater is a more expensive solution used in coastal arid climates. The distribution of drinking water is done through municipal water systems or as bottled water. Governments in many countries have programs to distribute water to the needy at no charge. Others argue that the market mechanism and free enterprise are best to manage this rare resource and to finance the boring of wells or the construction of dams and reservoirs.
Reducing waste by using drinking water only for human consumption is another option. In some cities such as Hong Kong, sea water is extensively used for flushing toilets citywide in order to conserve fresh water resources. Polluting water may be the biggest single misuse of water; to the extent that a pollutant limits other uses of the water, it becomes a waste of the resource, regardless of benefits to the polluter. Like other types of pollution, this does not enter standard accounting of market costs, being conceived as externalities for which the market cannot account. Thus other people pay the price of water pollution, while the private firms' profits are not redistributed to the local population victim of this pollution. Pharmaceuticals consumed by humans often end up in the waterways and can have detrimental effects on aquatic life if they bioaccumulate and if they are not biodegradable.
Religion, philosophy, and literature…
Water is considered a purifier in most religions. Major faiths that incorporate ritual washing (ablution) include Hinduism, Christianity, Islam, Judaism, and Shinto. Water baptism is a central sacrament of Christianity; it is also a part of the practice of other religions, including Judaism (mikvah) and Sikhism (Amrit Sanskar). In addition, a ritual bath in pure water is performed for the dead in many religions including Judaism and Islam. In Islam, the five daily prayers can be done in most cases after completing washing certain parts of the body using clean water (wudu). In Shinto, water is used in almost all rituals to cleanse a person or an area. Some faiths use water especially prepared for religious purposes.
Many religions also consider particular sources or bodies of water to be sacred or at least auspicious; examples include Lourdes in Roman Catholicism, the Zamzam Well in Islam and the River Ganges (among many others) in Hinduism. In Neo-Paganism water is often combined with salt in the first steps of a ritual, to act as a purifier of worshippers and the altar, symbolising both cleansing tears and the ocean. In Islam, not only does water give life, but every life is itself made of water: "We made from water every living thing".[Water was considered cold and moist. In the theory of the four bodily humors, water was associated with phlegm. Water was also one of the five elements in traditional Chinese philosophy, along with earth, fire, wood, and metal. Water also plays an important role in literature as a symbol of purification.
Water in Cosmetics….
Cool Water Perfume by Davidoff, Launched By The Design House Of Davidoff In 1996, Cool Water Is Classified As A Sharp, Flowery Fragrance. This Feminine Scent Possesses A Blend Of Citrus, Pineapple, And Woody Notes. Accompanied By The Scent Of The Pure Ocean Air. A calm aquatic note is livened by mint and green nuances, spiced with coriander. The unmistakably floral neroli essence and geranium based middle note makes it typically contemporary and masculine. The cedar and oakmoss end note is lightened up with musk.
Do you know????….
The single largest freshwater resource suitable for drinking is Lake Baikal in Siberia, which has a very low salt and calcium content and is very clean.
Water could be the blessings....from above...
1 comment:
thanks for an interesting and multi-faceted collection of information about water! I think you are right that water is really central to everyone's lives and civilizations. If you're interested in water pollution issues, you should check out the Right To Know For Clean Waters campaign (http://actnow.healthyrivers.org/) - they're trying to get Congress to notify the public when sewage gets dumped into public waterways, which is pretty nasty when you think about it.
Post a Comment